Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37983153

RESUMO

This manuscript proposes an electrical definition of therapeutic dose for spinal-cord systems used for the treatment of chronic pain, analogous to the pharmacological definition. Dose-response relationships are fundamental to pharmacology, radio-therapy, and other treatments, but have never been properly established for neuromodulation. This manuscript offers a robust measure of dose, pre-requisite to establishing a reliable and repeatable dose-response relationship. The new definition, enabled by the system transresistance obtained from measurement of evoked action potentials, recognizes the mechanism of action of spinal cord stimulation (SCS), and should improve acceptance of the therapy as compared to pharmacological treatments which are currently used more frequently for the treatment of chronic pain. The new definition suggests methods for personalization and standardization of the dose in SCS, and is potentially generalizable to all neuromodulation therapies in which nervous tissue is excited including sacral nerve stimulation (SNS), vagal nerve stimulation (VNS) and deep-brain stimulation (DBS). Formulas are provided, and applied using patient data. Powerful conclusions are drawn from application of the new measure.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Medula Espinal/fisiologia , Potenciais Evocados , Estimulação Elétrica
2.
Neuromodulation ; 23(1): 82-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31215718

RESUMO

INTRODUCTION: The electrically evoked compound action potential (ECAP) is a measure of the response from a population of fibers to an electrical stimulus. ECAPs can be assessed during spinal cord stimulation (SCS) to elucidate the relationship between stimulation, electrophysiological response, and neuromodulation. This has consequences for the design and programming of SCS devices. METHODS: Sheep were implanted with linear epidural SCS leads. After a stimulating pulse, electrodes recorded ECAPs sequentially as they propagated orthodromically or antidromically. After filtering, amplification, and signal processing, ECAP amplitude and dispersion (width) was measured, and conduction velocity was calculated. Similar clinical data was also collected. A single-neuron computer model that simulated large-diameter sensory axons was used to explore and explain the observations. RESULTS: ECAPs, both animal and human, have a triphasic structure, with P1, N1, and P2 peaks. Conduction velocity in sheep was 109 ms-1 , which indicates that the underlying neural population includes fibers of up to 20 µm in diameter. For travel in both directions, propagation distance was associated with decrease in amplitude and increase in dispersion. Importantly, characteristics of these changes shifted abruptly at various positions along the cord. DISCUSSION: ECAP dispersion increases with propagation distance due to the contribution of slow-conducting small-diameter fibers as the signal propagates away from the source. An analysis of the discontinuities in ECAP dispersion changes with propagation revealed that these are due to the termination of smaller-diameter, slower-conducting fibers at corresponding segmental levels. The implications regarding SCS lead placement, toward the goal of maximizing clinical benefit while minimizing side-effects, are discussed. CONFLICT OF INTEREST: John Parker is the founder and CEO of Saluda Medical and holds stock options. Milan Obradovic, Nastaran Hesam Shariati, Dean M. Karantonis, Peter Single, James Laird-Wah, Robert Gorman and Mark Bickerstaff are employees of Saluda Medical with stock options. At the time the data was collected for the study, Prof. Cousins was a paid consultant for Saluda Medical. John Parker, Milan Obradovic, Dean Karantonis, James Laird-Wah, Robert Gorman and Peter Single are co-inventors in one or more patents related to the topics discussed in this work.


Assuntos
Potenciais de Ação/fisiologia , Corno Dorsal da Medula Espinal/anatomia & histologia , Corno Dorsal da Medula Espinal/fisiologia , Animais , Ovinos , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal/citologia
3.
J Neural Eng ; 12(6): 066013, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26469805

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) has become the standard treatment for advanced stages of Parkinson's disease (PD) and other motor disorders. Although the surgical procedure has improved in accuracy over the years thanks to imaging and microelectrode recordings, the underlying principles that render DBS effective are still debated today. The aim of this paper is to present initial findings around a new biomarker that is capable of assessing the efficacy of DBS treatment for PD which could be used both as a research tool, as well as in the context of a closed-loop stimulator. APPROACH: We have used a novel multi-channel stimulator and recording device capable of measuring the response of nervous tissue to stimulation very close to the stimulus site with minimal latency, rejecting most of the stimulus artefact usually found with commercial devices. We have recorded and analyzed the responses obtained intraoperatively in two patients undergoing DBS surgery in the subthalamic nucleus (STN) for advanced PD. MAIN RESULTS: We have identified a biomarker in the responses of the STN to DBS. The responses can be analyzed in two parts, an initial evoked compound action potential arising directly after the stimulus onset, and late responses (LRs), taking the form of positive peaks, that follow the initial response. We have observed a morphological change in the LRs coinciding with a decrease in the rigidity of the patients. SIGNIFICANCE: These initial results could lead to a better characterization of the DBS therapy, and the design of adaptive DBS algorithms that could significantly improve existing therapies and help us gain insights into the functioning of the basal ganglia and DBS.


Assuntos
Potenciais de Ação/fisiologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Biomarcadores , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Projetos Piloto
4.
Neuromodulation ; 16(4): 295-303; discussion 303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844589

RESUMO

OBJECTIVES: The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. MATERIALS AND METHODS: We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. RESULTS: The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aß fiber recruitment. CONCLUSIONS: Amplitude of sheep Aß fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aß recruitment and power consumption in SCS devices.


Assuntos
Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Medula Espinal/fisiologia , Animais , Biofísica , Estimulação Elétrica , Ovinos
5.
Pain ; 153(3): 593-601, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22188868

RESUMO

Electrical stimulation of the spinal cord provides effective pain relief to hundreds of thousands of chronic neuropathic pain sufferers. The therapy involves implantation of an electrode array into the epidural space of the subject and then stimulation of the dorsal column with electrical pulses. The stimulation depolarises axons and generates propagating action potentials that interfere with the perception of pain. Despite the long-term clinical experience with spinal cord stimulation, the mechanism of action is not understood, and no direct evidence of the properties of neurons being stimulated has been presented. Here we report novel measurements of evoked compound action potentials from the spinal cords of patients undergoing stimulation for pain relief. The results reveal that Aß sensory nerve fibres are recruited at therapeutic stimulation levels and the Aß potential amplitude correlates with the degree of coverage of the painful area. Aß-evoked responses are not measurable below a threshold stimulation level, and their amplitude increases with increasing stimulation current. At high currents, additional late responses are observed. Our results contribute towards efforts to define the mechanism of spinal cord stimulation. The minimally invasive recording technique we have developed provides data previously obtained only through microelectrode techniques in spinal cords of animals. Our observations also allow the development of systems that use neuronal recording in a feedback loop to control neurostimulation on a continuous basis and deliver more effective pain relief. This is one of numerous benefits that in vivo electrophysiological recording can bring to a broad range of neuromodulation therapies.


Assuntos
Terapia por Estimulação Elétrica/métodos , Potenciais Evocados/fisiologia , Neuralgia/patologia , Neuralgia/terapia , Medula Espinal/fisiologia , Adulto , Idoso , Biofísica , Eletrocardiografia/métodos , Eletrodos , Espaço Epidural/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Postura , Tempo de Reação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...